LIMITS

Math 130 - Essentials of Calculus

10 February 2021

The process we were taking in the last example is that of a *limit*. We are limiting, in that case, the time increment to 0.

The process we were taking in the last example is that of a *limit*. We are limiting, in that case, the time increment to 0.

Consider the function

$$f(x)=\frac{x-1}{x^2-1}.$$

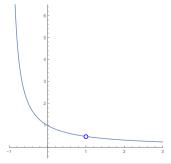
What is happening to the value of f(x) as the value of x is getting closer to 1?

The process we were taking in the last example is that of a *limit*. We are limiting, in that case, the time increment to 0.

Consider the function

$$f(x)=\frac{x-1}{x^2-1}.$$

What is happening to the value of f(x) as the value of x is getting closer to 1?



$$x \qquad f(x) \qquad x \qquad f(x)$$

$$\begin{array}{cccccc} x & f(x) & x & f(x) \\ \hline 0.8 & 0.55556 & 1.2 & 0.45455 \end{array}$$

X	f(x)	X	f(x)
0.8	0.55556	1.2	0.45455
0.9	0.52632	1.1	0.47619

X	f(x)	X	f(x)
0.8	0.55556	1.2	0.45455
0.9	0.52632	1.1	0.47619
0.95	0.51282	1.05	0.48780

X	f(x)	X	f(x)
8.0	0.55556	1.2	0.45455
0.9	0.52632	1.1	0.47619
0.95	0.51282	1.05	0.48780
0.98	0.50505	1.02	0.49505

X	f(x)	X	f(x)
8.0	0.55556	1.2	0.45455
0.9	0.52632	1.1	0.47619
0.95	0.51282	1.05	0.48780
0.98	0.50505	1.02	0.49505
0.99	0.50251	1.01	0.49751

X	f(x)	X	f(x)
0.8	0.55556	1.2	0.45455
0.9	0.52632	1.1	0.47619
0.95	0.51282	1.05	0.48780
0.98	0.50505	1.02	0.49505
0.99	0.50251	1.01	0.49751
0.995	0.50125	1.005	0.49875

What is happening to the value of f(x) as the value of x is getting closer to 1? On the left side, values are approaching 1 from the left, and values are approaching 1 from the right in the second pair of columns.

X	f(x)	X	f(x)
0.8	0.55556	1.2	0.45455
0.9	0.52632	1.1	0.47619
0.95	0.51282	1.05	0.48780
0.98	0.50505	1.02	0.49505
0.99	0.50251	1.01	0.49751
0.995	0.50125	1.005	0.49875
0.999	0.50025	1.001	0.49975

So it appears the values are approaching 0.5. We say $\lim_{x\to 1} \frac{x-1}{x^2-1} = 0.5$.

DEFINITION OF A LIMIT

DEFINITION

We write

$$\lim_{x\to a} f(x) = L$$

and say "the limit of f(x), as x approaches a, equals L" if the values of f(x) approach L as the values of x approach L as the values of L as the values of L approach L and L approach L appr

ESTIMATING A LIMIT

EXAMPLE

Use a table of values to estimate the value of the limit

$$\lim_{h\to 0}\frac{\ln(h+1)}{h}.$$

THEOREM (LIMIT LAWS)

THEOREM (LIMIT LAWS)

$$\lim_{x\to a}[f(x)+g(x)]=$$

THEOREM (LIMIT LAWS)

THEOREM (LIMIT LAWS)

- $\lim_{x\to a}[f(x)-g(x)]=$

THEOREM (LIMIT LAWS)

- $\lim_{x\to a} [f(x)-g(x)] = \lim_{x\to a} f(x) \lim_{x\to a} g(x)$

THEOREM (LIMIT LAWS)

- $\lim_{x \to a} [f(x) g(x)] = \lim_{x \to a} f(x) \lim_{x \to a} g(x)$
- $\lim_{x\to a}[cf(x)] =$

THEOREM (LIMIT LAWS)

- $\lim_{x \to a} [f(x) g(x)] = \lim_{x \to a} f(x) \lim_{x \to a} g(x)$
- $\lim_{x\to a}[cf(x)]=c\lim_{x\to a}f(x)$

THEOREM (LIMIT LAWS)

- $\lim_{x \to a} [f(x) g(x)] = \lim_{x \to a} f(x) \lim_{x \to a} g(x)$
- $\lim_{x\to a}[cf(x)]=c\lim_{x\to a}f(x)$
- $\lim_{x\to a} [f(x)g(x)] =$

THEOREM (LIMIT LAWS)

- $\lim_{x \to a} [f(x) g(x)] = \lim_{x \to a} f(x) \lim_{x \to a} g(x)$
- $\lim_{x\to a}[cf(x)]=c\lim_{x\to a}f(x)$

THEOREM (LIMIT LAWS)

- $\lim_{x\to a} [f(x)-g(x)] = \lim_{x\to a} f(x) \lim_{x\to a} g(x)$
- $\lim_{x\to a}[cf(x)]=c\lim_{x\to a}f(x)$
- $\lim_{x \to a} \frac{f(x)}{g(x)} =$

THEOREM (LIMIT LAWS)

- $\lim_{x\to a} [f(x)-g(x)] = \lim_{x\to a} f(x) \lim_{x\to a} g(x)$
- $\lim_{x\to a}[cf(x)]=c\lim_{x\to a}f(x)$

THEOREM (LIMIT LAWS)

$$\lim_{x \to a} [f(x) - g(x)] = \lim_{x \to a} f(x) - \lim_{x \to a} g(x)$$

$$\lim_{x\to a}[cf(x)]=c\lim_{x\to a}f(x)$$

$$\lim_{x\to a}\frac{f(x)}{g(x)}=\lim_{\substack{x\to a\\ y\to a}}\frac{f(x)}{g(x)}, \ \textit{provided} \ \lim_{x\to a}g(x)\neq 0.$$

$$\lim_{x\to a} [f(x)]^n =$$

THEOREM (LIMIT LAWS)

$$\lim_{x \to a} [f(x) - g(x)] = \lim_{x \to a} f(x) - \lim_{x \to a} g(x)$$

$$\lim_{x\to a}[cf(x)]=c\lim_{x\to a}f(x)$$

Compute the following limits:

Compute the following limits:

- $\lim_{x \to a} x$

Using the Limit Laws

Compute the following limits:

- $\begin{array}{cc}
 \mathbf{1} & \lim_{x \to 5} x
 \end{array}$
- $\lim_{x \to a} x$
- $\lim_{x\to 5} x^3$

7/11

Compute the following limits:

- $\begin{array}{cc}
 \mathbf{0} & \lim_{x \to 5} x
 \end{array}$
- $\lim_{x \to a} x$
- $\lim_{x\to 5} x^3$
- $\lim_{x \to a} x^r$

Compute the following limits:

- $\lim_{x \to a} x$
- $\lim_{x \to a} x'$
- $\lim_{x\to -2}(4x^2+x)$

Compute the following limits:

- $\lim_{x\to 5} x$
- $\lim_{x\to a} x$
- $\lim_{x\to 5} x^3$
- $x \rightarrow a$
- $\lim_{x \to -2} (4x^2 + x)$ $\lim_{x \to -2} 3w^2 + 1$

7/11

Compute the following limits:

- $\lim_{x \to a} x$
- $\lim_{x\to 5} x^3$
- $\lim_{x \to a} x^t$
- $\lim_{x\to-2}(4x^2+x)$
- $\lim_{v \to 5} \frac{3w^2 + 1}{w}$
- $\lim_{x \to 2} \frac{x^2 + x 6}{x 2}$

Compute the following limits:

- $\begin{array}{cc}
 \mathbf{0} & \lim_{x \to 5} x
 \end{array}$
- $\lim_{x \to a} x$
- $\lim_{x\to 5} x^3$
- $\lim_{x \to a} x^n$
- $\lim_{x\to-2}(4x^2+x)$
- $\lim_{x\to 5} \frac{3w^2+1}{w}$
- $\lim_{x\to 2} \frac{x^2+x-6}{x-2}$ Something's not right here...

CONTINUITY

Before we address what went wrong in that last example, let's come up with a new concept.

CONTINUITY

Before we address what went wrong in that last example, let's come up with a new concept.

DEFINITION (CONTINUOUS)

A function f is continuous at a number a if

$$\lim_{x\to a} f(x) = f(a).$$

8 / 11

CONTINUITY

Before we address what went wrong in that last example, let's come up with a new concept.

DEFINITION (CONTINUOUS)

A function f is continuous at a number a if

$$\lim_{x\to a} f(x) = f(a).$$

Intuitively, a function is continuous if you can draw its graph without lifting your pen.

CONTINUITY

Before we address what went wrong in that last example, let's come up with a new concept.

DEFINITION (CONTINUOUS)

A function f is continuous at a number a if

$$\lim_{x\to a} f(x) = f(a).$$

Intuitively, a function is continuous if you can draw its graph without lifting your pen. The function in that last example is one which is *not* continuous.

Examples of Continuous Functions

The following types of functions are continuous <u>on their domains</u>. This means, as long we're taking the limit to a value in the domain of the function, we can just plug the number into the function.

linear functions

- linear functions
- polynomials

- linear functions
- polynomials
- rational functions

- linear functions
- polynomials
- rational functions
- power functions

- linear functions
- polynomials
- rational functions
- power functions
- root functions

- linear functions
- polynomials
- rational functions
- power functions
- root functions
- exponential functions

- linear functions
- polynomials
- rational functions
- power functions
- root functions
- exponential functions
- logarithmic functions

- linear functions
- polynomials
- rational functions
- power functions
- root functions
- exponential functions
- logarithmic functions
- trigonometric functions

USING CONTINUITY TO EVALUATE A LIMIT

EXAMPLE

Consider the function
$$f(x) = \frac{x^2 + x - 6}{x - 2}$$
.

What is the domain of f?

USING CONTINUITY TO EVALUATE A LIMIT

EXAMPLE

Consider the function
$$f(x) = \frac{x^2 + x - 6}{x - 2}$$
.

- What is the domain of f?
- $② Compute <math>\lim_{x \to 4} f(x).$

10 / 11

USING CONTINUITY TO EVALUATE A LIMIT

EXAMPLE

Consider the function
$$f(x) = \frac{x^2 + x - 6}{x - 2}$$
.

- What is the domain of f?
- **3** Compute $\lim_{x\to 2} f(x)$.

Now You Try It!

EXAMPLE

Consider the function
$$f(x) = \frac{x^2 - 2x - 3}{x + 1}$$
.

- What is the domain of f?
- $② Compute \lim_{x \to 1} f(x).$
- **3** Compute $\lim_{x \to -1} f(x)$.

11 / 11